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ABSTRACT 

Necessary and sufficient conditions for a sequence (Pl, P2 . . . .  p . )  of positive 
integers to be the power sequence of a connected graph on n vertices with m 
edges are given. The maximum power of a connected graph on n vertices 
with m edges and the class of all extremal graphs are also determined. 

1. Introduction and definitions 

We consider only finite undirected graphs without loops or multiple edges. 

The power p(x) of a vertex x of  a connected graph G is the number of  com- 

ponents of  G - x.  I f  Pl,P2, "",Pn are the powers of  the vertices of  G, we say 

that G has the power sequence (p,, P2 , ' " ,  P,). 

The power p(G) of a connected graph G is 

max p(x). 
x C G  

A vertex x is called a cut vertex if p(x) >= 2. 

A connected graph without cut vertices is called biconnected. Thus a complete 

graph on two or fewer vertices is biconnected. 

A maximal biconnected subgraph of  a connected graph G is called a block 

of  G. 

For  other definitions and notation we follow Berge [1]. 

In this paper we solve two problems concerning the power sequence of  a graph. 

In §2, we obtain necessary and sufficient conditions for a sequence (Pl, P2, "", P,) 

of  positive integers to be the power sequence of a connected graph on n vertices 

with m edges. In §3, we determine the maximum power of  a connected graph 

on n vertices with m edges and the class of  all extremal graphs. 
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2. Graphs with given power sequence 

In this section we obtain necessary and sufficient conditions for the existence 

of  a connected graph on n vertices with m edges and with power sequence 

(Pi ,  P2, " " ,  Pn)" 

LEMMA 2.1 Let qt, q2 , " ' , q ,  be positive integers. A tree with power se- 
n 2 n quence (qt, q2, "",q,) exists if  andonly if ~,t=lqi= (n - .1) .  I f  ~,t= 1 q i = 2 ( n - 1 ) ,  

then any connected graph with power sequence (ql, q2, "", q,) is a tree. 

Proof. It  is evident that the power of  a vertex x of  a tree T coincides with the 

degree of  x in T. So to prove the first part  of  the lemma, it is enough to show 

that if  ]~ ~=l qt = 2 ( n -  1), then a tree T with degrees ql, q2, "", q, exists. The 

existence and construction of such a tree was already obtained in [3] and [5]. 

Here we give a different construction. Without loss of  generality we assume 

that ql = > q2 > = "'" = > q, .  

Take a vertex ao,1. Then take ql new vertices a 1,i ,  al,2, "", a~,q~ and join each 

of them to a0, t .  At the ith stage, i > 2, take qt - 1 new vertices a,.,1, at, 2 , ' " ,  at,q,-i 

and join each of  them to a t - l , 1 ,  provided qt - 1 > 1. Suppose io is the largest 

integer i such that q i -  1 > 1. Then it can be easily shown that 

1 + ql + ( q 2  - -  1) + -.. + (qto - 1) = n, 

so that the above construction is possible and gives a tree T with degrees 

ql, q2, "" ,q , .  
To prove the second assertion of  the lemma, let G be a connected graph with 

power sequence (ql, q2, "", q,) and let T be a spanning tree of  G. Since G and T 

have the same vertex set and every edge of Tis  an edge of  G, the power of  the ith 

vertex in T __> qi. I f  ]~7= 1 qt = 2 ( n - 1 ) ,  it follows that the power of  the ith 

vertex in T is q~ and G = T. This completes the proof  of  the lemma. 

THEOREM 2.2. Let P l ,P2 , ' " ,P ,  be positive integers. Then there exists a 

connected graph G with power sequence (Pl,P2, "",P.) if  and only if  

(2.1) ~ Pt < 2 ( n - 1 ) .  
i = i  

PROOF. Only if part  follows f rom the proof  of  Lemma 2.1. 

Conversely, let P~,P2, "",P, be positive integers satisfying condition (2.1). Let 

k = 2 ( n - l ) -  ]~7=lPt.  Then 0 < k < n - 2 .  Now without loss of  generality 

we assume that p~ > P2 > "'" > P, .  Define a new sequence (q~,q2, '" ,q,)  by: 
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qi = Pi-1-1 for i = 1 , ' " , k ,  

q* = Pi for i =  k + l , . . - , n .  

Then ]~'=t qi = 2 ( n - l ) .  Let T be the tree with power sequence (ql, q2, "", qn) 

constructed in the proof  of  Lemma 2.1. 

I f  k = 0, the p roof  of  the theorem is complete, so let k > 1. Then it is ob- 

vious that io > k.  The case Pl = 1 is trivial, so we take Pl > 2. Let il be the 

largest integer i such that q i -  1 > 2. We consider two cases now. 

Case (i): il > k. Then join a,.,1 to at,2 for i = 1 , . - . ,k .  

Case (ii): il < k. Then join ai. 1 to ai,2 for i = 1 , . . . , i l ,  and join ai,1 to 

ai~2 for i =  i l + l , . . . , k .  

Now it can be easily verified that the resulting graph has power sequence 

(Pl, P2, "", P,)- This completes the proof  of  the theorem. 

THEOREM 2.3. Let Pi, P2,'",P,, be positive integers and m > n. Then the 

following two conditions together are necessary and sufficient for the existence 

of a connected graph on n vertices with m edges and with power sequence 

(Pl, P2, " ' ,  P,): 

(2.1) ~ Pi < 2 ( n - 1 ) ,  
i = 1  

= 2 + n - k - 2 ,  

where k = 2 ( n -  1) - ~ = l  Pi. 

PROOF. The necessity of  condition (2.1) was proved in Theorem 2.2. To prove 

the necessity of  (2.2), let G be a connected graph on n vertices with m edges and 

with power sequence (Pl,P2, "",P,) .  I f  t is the number of  blocks in G, it can be 
n ~ proved by induction on t that ~/= 1 P~ n + t - 1, see [2]. Thus k = n - t - 1. 

Now from Theorem 1.2 of  [4-1, we have 

r n <  ( n - t + X )  ( k + 2 )  
= 2 + t - 1  = 2 + n - k - 2 .  

To prove sufficiency, let conditions (2.1) and (2.2) be satisfied and let 

Pl > P2 > "'" >= Pn" Then construct a graph H with power sequence 

(Pl, P2 , ' " ,  P,) as in the proof  of  Theorem 2.2. I f  k = 1, then m = n and H has 

m edges. So let k > 2. We consider two cases. 
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Case (i). il > k.  Then remove the edges incident to the vertices a x ,2, a2,2, "", 

ak-l ,2 and join each of these vertices to a k - i , i  and ak,x. The power sequence of  

the graph is not altered by this. Next replace the block on the k + 2 vertices 

ai,2, a2,2, "" ,ak-l ,2,  ak,a ,ak,2, ag-i,1 by an elementary cycle C on the same 

vertices. The graph H a thus obtained has n edges. Now if we write m = n + l ,  

then by (2.2) , l  =< (k +2 2) - k - 2 ,  s o / n e w  edges can be added to the cycle C 

of H i . 

Case (ii). i l < k .  The c a s e p l  = 1 i s  trivial, so let ia > 1. I f  ix = 1, then 

the k + 2 vertices ao,a, aa,a, "", ak,~, al,2 form a block in H .  I f  i a > 1, then re- 

move the edges incident to the vertices aa,2, a2,2,...,a~l_a, 2 and join each of 

these vertices to ak-a,a and ak, a . Then we get a block on the k + 2 vertices 

al,2, "",a~l,z,a~,-a,a, "",ak,a. Now this block can be replaced by a cycle and the 

construction completed as in case (i). This completes the proof  of  the theorem. 

3. Maximum power of a graph 

In this section we determine the maximum power of  a connected graph on n 

vertices with m edges and the class of  all extremal graphs. 

THEOREM 3.1. The max imum power of a connected graph on n vertices 

with rn edges is r + 1, where r = r(n,m) is given by 

(3.1) 

and Ix]  denotes the greatest integer < x .  

PROOF. Let G be any connected graph on n vertices with m edges. I f  t is the 

number  of  blocks in G, obviously p(G) < t. Now by rearranging the blocks 

of  G in the form of a chain, we get a graph with t -  1 cut vertices. Hence by Theo- 

rem 1.3 of  [4], it follows that t - 1  __< r .  Thus p(G) < r + 1. To construct a 

graph which attains the power r + 1, take any biconnected graph G O on n -  r 

vertices with m - r edges, add r new vertices and join them to one vertex of  

G o . This completes the proof  of  the theorem. 

The following result can be deduced easily from the p roof  of  Theorem 3.1: 

a connected graph on n vertices with rn edges and with power p exists if  and 

only if 1 <=p<= r ( n , m ) + l  and if m = n - l ,  then p C  1. 
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THEOREM 3.2. Let r = r(n,m) be given by (3.1). Then the connected graphs 

on n vertices with m edges and with power r + 1 are the following, where (2) 

( n - r -  1) 
is possible only when m = 2 + r + 2: 

(1) a graph consisting of r + 1 blocks incident with a common vertex, r 

of the blocks being edges and the other having n - r  vertices and m - r  edges. 

(2) a graph consisting of r + 1 blocks incident with a common vertex, r - 1  

of  the blocks being edges and the other two being complete graphs on three 

and n - r - 1  vertices respectively. 

PROOF. Let G be a connected graph on n vertices with m edges and with power 

r + 1 attained by a vertex x .  Then x together with the vertices of  any component 

of  G - x forms a block of  G. Arranging these blocks in the form of  a chain, 

we get a graph with r cut vertices, hence its structure is given by Theorem 1.8 

of  [4]. Now the present theorem follows easily. 

We mention the following unsolved problem. Find necessary and sufficient 

conditions for the existence of a connected graph on n vertices with degree of  

the ith vertex equal to d i and power of the ith vertex equal to Pi, i = 1, 2, ..-, n.  

We wish to thank Dr. U. S. R. Murty for suggesting the problems solved in 

this paper. 
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