ON THE POWER SEQUENCE OF A GRAPH

BY

A. RAMACHANDRA RAO AND S. B. RAO

ABSTRACT

Necessary and sufficient conditions for a sequence $(p_1, p_2, ..., p_n)$ of positive integers to be the power sequence of a connected graph on *n* vertices with *m* edges are given. The maximum power of a connected graph on *n* vertices with *m* edges and the class of all extremal graphs are also determined.

1. Introduction and definitions

We consider only finite undirected graphs without loops or multiple edges. The power p(x) of a vertex x of a connected graph G is the number of components of G - x. If p_1, p_2, \dots, p_n are the powers of the vertices of G, we say that G has the power sequence (p_1, p_2, \dots, p_n) .

The power p(G) of a connected graph G is

$$\max_{x \in G} p(x).$$

A vertex x is called a cut vertex if $p(x) \ge 2$.

A connected graph without cut vertices is called biconnected. Thus a complete graph on two or fewer vertices is biconnected.

A maximal biconnected subgraph of a connected graph G is called a block of G.

For other definitions and notation we follow Berge [1].

In this paper we solve two problems concerning the power sequence of a graph. In §2, we obtain necessary and sufficient conditions for a sequence (p_1, p_2, \dots, p_n) of positive integers to be the power sequence of a connected graph on *n* vertices with *m* edges. In §3, we determine the maximum power of a connected graph on *n* vertices with *m* edges and the class of all extremal graphs.

Received August 29, 1969, and in revised form April 9, 1970

2. Graphs with given power sequence

In this section we obtain necessary and sufficient conditions for the existence of a connected graph on *n* vertices with *m* edges and with power sequence (p_1, p_2, \dots, p_n) .

LEMMA 2.1 Let q_1, q_2, \dots, q_n be positive integers. A tree with power sequence (q_1, q_2, \dots, q_n) exists if and only if $\sum_{i=1}^n q_i = 2(n-1)$. If $\sum_{i=1}^n q_i = 2(n-1)$, then any connected graph with power sequence (q_1, q_2, \dots, q_n) is a tree.

Proof. It is evident that the power of a vertex x of a tree T coincides with the degree of x in T. So to prove the first part of the lemma, it is enough to show that if $\sum_{i=1}^{n} q_i = 2(n-1)$, then a tree T with degrees q_1, q_2, \dots, q_n exists. The existence and construction of such a tree was already obtained in [3] and [5]. Here we give a different construction. Without loss of generality we assume that $q_1 \ge q_2 \ge \dots \ge q_n$.

Take a vertex $a_{0,1}$. Then take q_1 new vertices $a_{1,1}, a_{1,2}, \dots, a_{1,q_1}$ and join each of them to $a_{0,1}$. At the *i*th stage, $i \ge 2$, take $q_i - 1$ new vertices $a_{i,1}, a_{i,2}, \dots, a_{i,q_{l-1}}$ and join each of them to $a_{i-1,1}$, provided $q_i - 1 \ge 1$. Suppose i_0 is the largest integer *i* such that $q_i - 1 \ge 1$. Then it can be easily shown that

$$1 + q_1 + (q_2 - 1) + \dots + (q_{i_0} - 1) = n,$$

so that the above construction is possible and gives a tree T with degrees q_1, q_2, \dots, q_n .

To prove the second assertion of the lemma, let G be a connected graph with power sequence (q_1, q_2, \dots, q_n) and let T be a spanning tree of G. Since G and T have the same vertex set and every edge of T is an edge of G, the power of the *i*th vertex in $T \ge q_i$. If $\sum_{i=1}^{n} q_i = 2(n-1)$, it follows that the power of the *i*th vertex in T is q_i and G = T. This completes the proof of the lemma.

THEOREM 2.2. Let p_1, p_2, \dots, p_n be positive integers. Then there exists a connected graph G with power sequence (p_1, p_2, \dots, p_n) if and only if

(2.1)
$$\sum_{i=1}^{n} p_i \le 2(n-1)$$

PROOF. Only if part follows from the proof of Lemma 2.1.

Conversely, let p_1, p_2, \dots, p_n be positive integers satisfying condition (2.1). Let $k = 2(n-1) - \sum_{i=1}^{n} p_i$. Then $0 \le k \le n-2$. Now without loss of generality we assume that $p_1 \ge p_2 \ge \dots \ge p_n$. Define a new sequence (q_1, q_2, \dots, q_n) by:

$$q_i = p_i + 1$$
 for $i = 1, \dots, k$,
 $q_i = p_i$ for $i = k + 1, \dots, n$.

Then $\sum_{i=1}^{n} q_i = 2(n-1)$. Let T be the tree with power sequence (q_1, q_2, \dots, q_n) constructed in the proof of Lemma 2.1.

If k = 0, the proof of the theorem is complete, so let $k \ge 1$. Then it is obvious that $i_0 \ge k$. The case $p_1 = 1$ is trivial, so we take $p_1 \ge 2$. Let i_1 be the largest integer i such that $q_i - 1 \ge 2$. We consider two cases now.

Case (i): $i_1 \ge k$. Then join $a_{i,1}$ to $a_{i,2}$ for $i = 1, \dots, k$.

Case (ii): $i_1 < k$. Then join $a_{i,1}$ to $a_{i,2}$ for $i = 1, \dots, i_1$, and join $a_{i,1}$ to $a_{i_1,2}$ for $i = i_1 + 1, \dots, k$.

Now it can be easily verified that the resulting graph has power sequence (p_1, p_2, \dots, p_n) . This completes the proof of the theorem.

THEOREM 2.3. Let p_1, p_2, \dots, p_n be positive integers and $m \ge n$. Then the following two conditions together are necessary and sufficient for the existence of a connected graph on n vertices with m edges and with power sequence (p_1, p_2, \dots, p_n) :

(2.1)
$$\sum_{i=1}^{n} p_i < 2(n-1),$$

(2.2)
$$m \leq \binom{k+2}{2} + n - k - 2,$$

where $k = 2(n-1) - \sum_{i=1}^{n} p_i$.

PROOF. The necessity of condition (2.1) was proved in Theorem 2.2. To prove the necessity of (2.2), let G be a connected graph on n vertices with m edges and with power sequence (p_1, p_2, \dots, p_n) . If t is the number of blocks in G, it can be proved by induction on t that $\sum_{i=1}^{n} p_i = n + t - 1$, see [2]. Thus k = n - t - 1. Now from Theorem 1.2 of [4], we have

$$m \leq \binom{n-t+1}{2} + t - 1 = \binom{k+2}{2} + n - k - 2.$$

To prove sufficiency, let conditions (2.1) and (2.2) be satisfied and let $p_1 \ge p_2 \ge \cdots \ge p_n$. Then construct a graph H with power sequence (p_1, p_2, \dots, p_n) as in the proof of Theorem 2.2. If k = 1, then m = n and H has m edges. So let $k \ge 2$. We consider two cases.

Vol. 8, 1970

Case (i). $i_1 \ge k$. Then remove the edges incident to the vertices $a_{1,2}, a_{2,2}, \cdots$, $a_{k-1,2}$ and join each of these vertices to $a_{k-1,1}$ and $a_{k,1}$. The power sequence of the graph is not altered by this. Next replace the block on the k + 2 vertices $a_{1,2}, a_{2,2}, \cdots, a_{k-1,2}, a_{k,1}, a_{k,2}, a_{k-1,1}$ by an elementary cycle C on the same vertices. The graph H_1 thus obtained has n edges. Now if we write m = n + l, then by (2.2), $l \le {\binom{k+2}{2}} - k - 2$, so l new edges can be added to the cycle C of H_1 .

Case (ii). $i_1 < k$. The case $p_1 = 1$ is trivial, so let $i_1 \ge 1$. If $i_1 = 1$, then the k + 2 vertices $a_{0,1}, a_{1,1}, \dots, a_{k,1}, a_{1,2}$ form a block in H. If $i_1 > 1$, then remove the edges incident to the vertices $a_{1,2}, a_{2,2}, \dots, a_{i_1-1,2}$ and join each of these vertices to $a_{k-1,1}$ and $a_{k,1}$. Then we get a block on the k + 2 vertices $a_{1,2}, \dots, a_{i_1,2}, a_{i_1-1,1}, \dots, a_{k,1}$. Now this block can be replaced by a cycle and the construction completed as in case (i). This completes the proof of the theorem.

3. Maximum power of a graph

In this section we determine the maximum power of a connected graph on n vertices with m edges and the class of all extremal graphs.

THEOREM 3.1. The maximum power of a connected graph on n vertices with m edges is r + 1, where r = r(n, m) is given by

(3.1)
$$r(n,m) = \max\left\{q: q \le n-2, m \le \binom{n-q}{2} + q\right\}$$
$$= \left[n - \frac{3}{2} - \sqrt{2m - 2n + \frac{9}{4}}\right]$$

and [x] denotes the greatest integer $\leq x$.

PROOF. Let G be any connected graph on n vertices with m edges. If t is the number of blocks in G, obviously $p(G) \leq t$. Now by rearranging the blocks of G in the form of a chain, we get a graph with t-1 cut vertices. Hence by Theorem 1.3 of [4], it follows that $t-1 \leq r$. Thus $p(G) \leq r+1$. To construct a graph which attains the power r+1, take any biconnected graph G_0 on n-r vertices with m-r edges, add r new vertices and join them to one vertex of G_0 . This completes the proof of the theorem.

The following result can be deduced easily from the proof of Theorem 3.1: a connected graph on *n* vertices with *m* edges and with power *p* exists if and only if $1 \le p \le r(n,m) + 1$ and if m = n-1, then $p \ne 1$. THEOREM 3.2. Let r = r(n, m) be given by (3.1). Then the connected graphs on n vertices with m edges and with power r + 1 are the following, where (2) is possible only when $m = \binom{n-r-1}{2} + r + 2$:

(1) a graph consisting of r + 1 blocks incident with a common vertex, r of the blocks being edges and the other having n-r vertices and m-r edges.

(2) a graph consisting of r + 1 blocks incident with a common vertex, r-1 of the blocks being edges and the other two being complete graphs on three and n-r-1 vertices respectively.

PROOF. Let G be a connected graph on n vertices with m edges and with power r + 1 attained by a vertex x. Then x together with the vertices of any component of G - x forms a block of G. Arranging these blocks in the form of a chain, we get a graph with r cut vertices, hence its structure is given by Theorem 1.8 of [4]. Now the present theorem follows easily.

We mention the following unsolved problem. Find necessary and sufficient conditions for the existence of a connected graph on n vertices with degree of the *i*th vertex equal to d_i and power of the *i*th vertex equal to p_i , i = 1, 2, ..., n.

We wish to thank Dr. U. S. R. Murty for suggesting the problems solved in this paper.

References

1. C. Berge, The theory of graphs and its applications, Methuen, London, 1962.

2. F. Harary, An elementary theorem on graphs, Amer. Math. Monthly, 66 (1959), 405-407.

3. V. V. Menon, On the existence of trees with given degrees, Sankhya, Ser A, 26 (1964), 63-68.

4. A. Ramachandra Rao, An extremal problem in graph theory, Israel J. Math., 6 (1968), 261-266.

5. C. Ramanujacharyulu, Trees and tree-equivalent graphs, Canad. Jour. Math., 17 (1965), 731-733.

INDIAN STATISTICAL INSTITUTE CALCUTTA, INDIA